

Design:

- sample: n = 9 healthy participants (mean age: 35 ± 9 years)
- within-subject design: anodal, cathodal and sham stimulation in
- double-blinded tDCS

Protocol (Prism adaptation):

Training	Base- line	Adaptation	Deadaptation	Rest
Pointing error Left				-
40 trials (CLP and OLP)	15 OLP trials	PRISM GLASSES tDCS (20min) 190 trials 6 CLP and 6 OLP blocks in alternating order	150 trials 6 CLP and 6 OLP blocks in alternating order	10 min

Cerebellar inhibition disrupts prism adaptation by impairing feedforward error correction

Verena Sarrazin^a, Matthieu Kandel^b, Valerie Gaveau^b, Gershon Spitz^{c,d}, Pierre Petitet^c, Yves Rossetti^b & Jacinta O'Shea^a

^aOHBA, Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, ^bIMPACT, Lyon Neuroscience Research Center, ^cFMRIB, NDCN, Wellcome Centre for Integrative Neuroimaging, ^dMonash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University

learns from terminal error of previous trial

(i: initial, t: terminal, s: slow)

Conclusions

wellcome

- Cathodal cerebellar tDCS impairs error reduction during adaptation
- replication of previous findings^{4,5}
- polarity-specific (no effect of anodal tDCS⁶) and **functionally**specific: no effect on the after-effect, deadaptation or retention
- 2. Cathodal tDCS disrupted adaptation by specifically impairing the correction of the initial reach direction
 - causal role of the cerebellum in feedforward error corrrection
- 3. Cathodal tDCS disrupted slow learning processes during prism exposure
- 4. Model fitting shows that cathodal tDCS disrupts over-compensation of the initial reach direction
 - this slow learning process normally drives error reduction during later stages of adaptation

References

¹Galea et al. (2009), *Journal of Neuroscience* ²O'Shea et al. (2014), Neuropsychologia ³Smith et al. (2006), *PLoS Biology* ⁴Herzfeld et al. (2014)*, NeuroImage* ⁵Panico et al. (2016), *Brain and Cognition* ⁶Jalali et al. (2017), Journal of Neurophysiology

Figures reproduced with permission from: Petitet et al. (2018), Neuropsychologia Grimaldi et al. (2016), The Neuroscientist

Funded by MRC studentship to VS and Wellcome/Royal Society SHDF to JOS (215451/Z/19/Z).

Author correspondence: verena.sarrazin@psych.ox.ac.uk