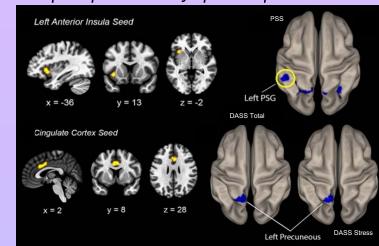
Mechanical Affective Touch Therapy (MATT) for Anxiety Disorders: Effects on Resting State Functional Connectivity

Meghan A. Gonsalves, ScM^{1, 2}, Quincy Beck, ScB², Andrew M. Fukuda, MD, PhD^{2, 3}, Eric Tirrell, BA², Fatih Kokdere, MD^{2, 3}, Eugenia F. Kronenberg, ScB², Nicolas D. Iadarola, MS^{2, 4}, Sean Hagberg, PhD^{5, 6}, Linda L. Carpenter, MD^{2, 3*}, Jennifer Barredo, PhD^{2, 3, 7}

Background:

Mechanical Affective Touch Therapy (MATT) is a a novel non-invasive mechanical nerve stimulation device targeting peripheral nerves developed by AffectNeuro for treatment of anxiety. The device delivers gentle, topical vibrations (< 20 KHz) over the mastoid processes.

Aim: We evaluated the effects of MATT treatment on resting state functional connectivity (RSFC) in pain and anxiety circuits in adults diagnosed with an Axis I anxiety disorder.


Hypotheses: 1) RSFC in pain and anxiety circuits at baseline will predict post-treatment symptom response. 2) Acute RSFC changes will be observable following initial stimulation. 3) Changes in RSFC of these circuits occurring across treatment will correlate with symptom changes.

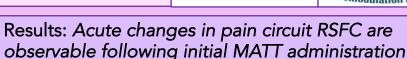
Methods: Study Design & Participants

Design: Participants in an open-label trial self-administered MATT for at least two 20-minute sessions daily for four weeks. 3T MRI: Structural images and 10 minutes of resting-state fMRI were collected: (1) before initial MATT stimulation (baseline; T1), (2) immediately after baseline stimulation (T2), and (3) after completion of treatment (T3). Participants: All were diagnosed with at least one Axis I AD (i.e. GAD, PD, SAD). Self-report: GAD-7, DASS Total & Subscales, PSS, and BDI) were collected at T1 and T3.

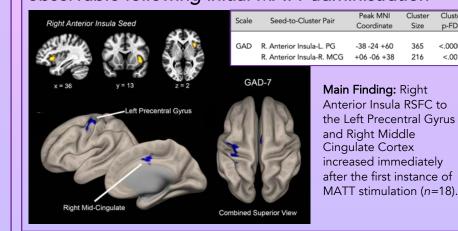
	T1	T1-T2	T1-T3
n	20	18	14
Age, mean (s.d.)	35.80 (14.72)	37.28 (14.80)	35.86 (14.46)
Females, n (%)	14 (70.00)	13 (72.20)	10 (71.40)
% MATT Compliance, mean (s.d.)	74.50 (33.00)	77.92 (30.83)	89.53 (19.86)
% MATT Treatment Completer, n (%)	15 (75.00)	14 (77.80)	14 (100.00)

Results: Pre-treatment RSFC in pain circuits predicts subsequent post-MATT symptom improvement

Main Finding: Stronger


positive RSFC between i and cingulate pain circuit default and executive networks predicted great reductions in stress at treatment endpoint (n=2)

ts & PSS L. Anterior Insula-L. PSG -50 -42 +48 ter DASS Total Cingulate Cortex-L. Precuneous -08 -58 +58 DESE Corr Cingulate Cortex-L. Precuneous -08 -58 +58		Scale	Seed-to-Cluster Pair	Peak MNI Coordinate	Cluster Size	Cluster p-FDR
		PSS	L. Anterior Insula-L. PSG	-50 -42 +48	317	<.0001
DASS Street Charles Control Designed and Educid	۶A	ASS Total	Cingulate Cortex-L. Precuneous	-08 -58 +58	315	<.001
0).	A	SS Stress	Cingulate Cortex-L. Precuneous	-08 -58 +60	267	<.01


Methods: Seed-to-Voxel Analyses

The CONN Toolbox was used for all preprocessing and analyses. A priori Functional Regions of Interest (ROIs) were based on term maps for "pain" and "anxiety" in the Neurosynth database. Second-level ANCOVA models used for hypothesis testing controlled for baseline symptom severity. Results were corrected for multiple comparisons (voxel p-unc.<.005, cluster p-FDR<.05) and subjected to leave-one-out cross validation.

¹ Neuroscience Graduate Program, Brown University, Providence, RI; ² Butler Hospital Neuromodulation Research Facility, Providence, RI; ³ Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI; ⁴ University of Arizona College of Medicine- Tucson, Tucson, AZ; ⁵ Affect Neuro, Brooklyn, NY; ⁴ University of New Mexico Department of Neurosurgery, Albuquerque, NN; ⁷ Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI;

BROWN

Results: Changes in pain circuit RSFC to the default network are correlated with symptom improvement

after a course of MATT

I	Scale	Seed-to-Cluster Pair	Peak MNI Coordinate	Cluster Size	Cluster p- FDR
I	DASS Total	Cingulate Cortex-L. ASG	-66 -34 +24	186	<.001
I	DASS Depression	Cingulate Cortex-L. ASG	-66 -34 +24	168	<.01

Main Finding: Increased positive RSFC between the cingulate and left anterior supramarginal gyrus at treatment endpoint were correlated with decreases in total DASS scores & DASS Depression scores (n=14).

TMS Clinic

Cluster

p-FDR

<.0000 <.001

Conclusions: MATT-induced increased connectivity between pain and anxiety ROIs and posterior DMN regions involved in memory and self-reflection correlate with decreases in stress and depression post-treatment. Acutely, we observed increases in insula connectivity between mid-cingulate cortex and postcentral motor regions.