Reliability of robotic TMS with 3D head models constructed by a depth camera

Mitsuaki Takemi¹, Junichi Ushiba²

1: Graduate School of Science & Technology, Keio University, Yokohama, Japan. 2: Faculty of Science & Technology, Keio University, Yokohama, Japan.

mitsuaki1988@me.com

Robotic TMS

Our robotic transcranial magnetic stimulation (TMS) system makes TMS experiments easier and more reliable.

[Functions]

Automatic adjustments of the position and orientation of the coil.

Fully automatic TMS evaluation, such as; - Motor threshold & hotspot estimation

Result: Model accuracy

MRI-based models likely reflect the actual head shape more accurately than RGBD sensor-based models.

Landmarks

- IO curve, paired-pulse protocols

- Sulcus-aligned motor mapping^[1]

Current issue: Robotic TMS requires an individual 3D head model scanned by MRI to place the coil tangential to the scalp, though MRI is not available in all research environments.

Purpose

Comparing the reliability of robotic TMS with a 3D head model constructed using an RGBD sensor (Azure Kinect) and a head model made from MRI images.

MRI RGBD

Fig 1. Averaged position error of landmarks in the model from the points scanned on the subject after co-registration of participants and head models.

Result: Motor map reliability

The size of estimated motor maps was not different between the head models and showed equivalently poor reliability^[6].

The location of the center of gravity (CoG) of estimated motor maps, called hotspot, showed moderate to good reliability for the both models.

CoG (hotspot) location

Resolution: 0.85 mm isotropic Advantage: established as a method Limitations: installation & running costs

Resolution: 1.4 mm isotropic Advantages: lower price & space saving -> the reliability needs to be validated.

Mediolateral CoG MRI: ICC = 0.58RGBD: ICC = 0.69

Anteroposterior CoG MRI: ICC = 0.90RGBD: ICC = 0.90

Result: Motor threshold reliability

Motor thresholds over the hotspot were not different between the head models and showed equivalently excellent reliability.

Prior to the first visit, T1 and T2-weighted MRIs were acquired. MRI-based head models were created using the "headreco" function in simNIBS ver3.2.6^[5].

• A head scan with the RGBD sensor is performed prior to the first screening.

References

[1] Raffin et al., Neuroimage 2015. [3] Awiszus, Suppl Clin Neurophysiol 2003. [5] Thielscher et al., IEEE EBMS 2015.

[2] Weise et al., Neuroimage 2019. [4] Ruit et al., Brain Stimul 2015. [6] Koo & Li, J Chiropr Med 2016.

Funding: JST Moonshot R&D (#JPMJMS2012)

Conclusions

The results demonstrated that hotspot and motor threshold are equivalently evaluated with both models, although MRI-based models likely reflect the actual head shape more accurately than RGBD sensor-based models. RGBD sensor-based head model can be utilized for the robotic TMS, particularly when MRI images are unavailable.